Biểu diễn liên phân số của các số thực đặc biệt Liên_phân_số

Biểu diễn liên phân số của số π {\displaystyle \pi }

Biểu diễn liên phân số chính tắc của số π {\displaystyle \pi } :

π = [ 3 ; 7 , 15 , 1 , 292 , 1 , 1 , 1 , 2 , 1 , 3 , 1 , 14 , 2 , 1 , 1 , 2 , 2 , 2 , 2 , 1 , 84 , ⋯ ] {\displaystyle \pi =[3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,2,1,84,\cdots ]} . π = 3 + 1 7 + 1 15 + 1 1 + 1 292 + 1 1 + 1 1 + 1 1 + 1 2 + 1 1 + 1 3 + 1 1 + 1 14 + 1 2 + 1 1 + 1 1 + ⋱ {\displaystyle \pi =3+{\cfrac {1}{7+{\cfrac {1}{15+{\cfrac {1}{1+{\cfrac {1}{292+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{1+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{3+{\cfrac {1}{1+{\cfrac {1}{14+{\cfrac {1}{2+{\cfrac {1}{1+{\cfrac {1}{1+\ddots }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Từ biểu diễn đó, ta tìm ra được các số hữu tỉ gần đúng với π là:

3 1 , 22 7 , 333 106 , 355 113 , … {\displaystyle {\frac {3}{1}},{\frac {22}{7}},{\frac {333}{106}},{\frac {355}{113}},\,\ldots } .

Các thành phần trong liên phân số chính tắc (với các tử số bằng 1) của số π, không hề tuân theo một quy luật nào.

Tuy vậy các cách biểu diễn liên phân số khác (không chính tắc) của π lại có quy luật:

π = 4 1 + 1 2 2 + 3 2 2 + 5 2 2 + 7 2 2 + 9 2 2 + ⋱ = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 6 + 9 2 6 + ⋱ = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + ⋱ {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+{\cfrac {9^{2}}{2+\ddots }}}}}}}}}}}}=3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+{\cfrac {9^{2}}{6+\ddots }}}}}}}}}}={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}

Biểu diễn liên phân số của số e và các dạng khác của nó

Trong khi dạng liên phân số đơn giản của π không có quy luật, điều này lại không đúng với trường hợp của e:

e = e 1 = [ 2 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , 1 , 1 , 10 , 1 , 1 , 12 , 1 , 1 , … ] , {\displaystyle e=e^{1}=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,\dots ]\,\!,}

tổng quát hơn,:

e 1 / n = [ 1 ; n − 1 , 1 , 1 , 3 n − 1 , 1 , 1 , 5 n − 1 , 1 , 1 , 7 n − 1 , 1 , 1 , … ] . {\displaystyle e^{1/n}=[1;n-1,1,1,3n-1,1,1,5n-1,1,1,7n-1,1,1,\dots ]\,\!.}

và:

e 2 / n = [ 1 ; n − 1 2 , 6 n , 5 n − 1 2 , 1 , 1 , 7 n − 1 2 , 18 n , 11 n − 1 2 , 1 , 1 , 13 n − 1 2 , 30 n , 17 n − 1 2 , 1 , 1 , … ] , {\displaystyle e^{2/n}=\left[1;{\frac {n-1}{2}},6n,{\frac {5n-1}{2}},1,1,{\frac {7n-1}{2}},18n,{\frac {11n-1}{2}},1,1,{\frac {13n-1}{2}},30n,{\frac {17n-1}{2}},1,1,\dots \right]\,\!,}

với n = 1:

e 2 = [ 7 ; 2 , 1 , 1 , 3 , 18 , 5 , 1 , 1 , 6 , 30 , 8 , 1 , 1 , 9 , 42 , 11 , 1 , 1 , 12 , 54 , 14 , 1 , 1 … , 3 k , 12 k + 6 , 3 k + 2 , 1 , 1 … ] . {\displaystyle e^{2}=[7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,1,12,54,14,1,1\dots ,3k,12k+6,3k+2,1,1\dots ]\,\!.}

Các số thực khác

tan ⁡ ( 1 / n ) = [ 0 ; n , 3 n , 5 n , 7 n , 9 n , 11 n , 13 n , 15 n , 17 n , 19 n , … ] {\displaystyle \tan(1/n)=[0;n,3n,5n,7n,9n,11n,13n,15n,17n,19n,\dots ]\,\!}

với n là số nguyên dương.

tan ⁡ ( 1 / n ) = [ 0 ; n − 1 , 1 , 3 n − 2 , 1 , 5 n − 2 , 1 , 7 n − 2 , 1 , 9 n − 2 , 1 , … ] , {\displaystyle \tan(1/n)=[0;n-1,1,3n-2,1,5n-2,1,7n-2,1,9n-2,1,\dots ]\,\!,}

trường hợp riêng n = 1:

tan ⁡ ( 1 ) = [ 1 ; 1 , 1 , 3 , 1 , 5 , 1 , 7 , 1 , 9 , 1 , 11 , 1 , 13 , 1 , 15 , 1 , 17 , 1 , 19 , 1 , … ] . {\displaystyle \tan(1)=[1;1,1,3,1,5,1,7,1,9,1,11,1,13,1,15,1,17,1,19,1,\dots ]\,\!.}

Tài liệu tham khảo

WikiPedia: Liên_phân_số http://www.research.att.com/~njas/sequences/A13359... http://sputsoft.com/2009/11/continued-fractions-an... http://demonstrations.wolfram.com/ContinuedFractio... http://demonstrations.wolfram.com/ContinuedFractio... http://mathworld.wolfram.com/ContinuedFraction.htm... http://vn.answers.yahoo.com/question/index;_ylt=Ak... http://www.math.sunysb.edu/~tony/whatsnew/column/a... http://www.cut-the-knot.org/blue/ContinuedFraction... http://www.linas.org/math/chap-gap/chap-gap.html https://id.loc.gov/authorities/subjects/sh85051149